Research
Current projects
Profinite rigidity of reflection groups
Duration: 01.08.2022 bis 31.12.2025
Profinite rigidity asks to determine a group by its finite quotients. This concept is classical in group theory and many results in this direction are known. Geometric group theory has picked up on this notion in recent years. We aim to study profinite rigidity for abstract reflection groups.
Completed projects
Algorithmische Eigenschaften schon Coxeter Schatten
Duration: 01.04.2021 bis 30.09.2024
Shadows in Coxeter groups are a well established tool which helps to characterize non-emptiness of double coset intersections in algebraic groups having these Coxeter groups as affine Weyl groups. These intersections in tern are relevant in the context of representation theory or in the study of non-emptiness and dimensions of certain varieties associated to the affine flag variety and affine Grassmannian. This project aims to find closed formulas for and a better algorithmic understanding of shadows.
Geometry of conjugation
Duration: 01.01.2022 bis 31.12.2023
The conjugacy problem is one of Dehn's three classical problems in group theory. It asks to determine whether or not tow given elements in a group are conjugate. In this project we solve this problem and characterize the full conjugacy class of elements in split subgroups of the full isometry group of the n-dimensional real affine space.
A unified approach to symmetric spaces of noncompact type and euclidean buildings
Duration: 01.10.2020 bis 30.09.2023
The aim of the project is to provide a uniform framework which allows us to treat Riemannian symmetric spaces of noncompact type and
Euclidean buildings on an equal footing. We will in particular consider
the question of the extension of automorphisms at infinity,
filling properties of S-arithmetic groups, and Kostant Convexity
from an unified viewpoint.
Spiegelungslänge in nicht-affinen Coxetergruppen
Duration: 01.04.2019 bis 30.09.2023
This project aims to study reflection length in infinite, on-affine Coxeter groups. The goal is to find sequences of elements of growing reflection length, to describe the distribution of a fixed reflection length in hyperbolic space and to prove estimates of reflection length for a given S-length.
Isomorphism problem for Coxeter groups
Duration: 01.04.2022 bis 31.03.2023
In this project we introduce the galaxy of Coxeter groups - an infinite dimensional, locally finite, ranked simplicial complex which captures isomorphisms between Coxeter systems. In doing so, we would like to suggest a new framework to study the isomorphism problem for Coxeter groups. We prove some structural results about this space, provide a full characterization in small ranks and propose many questions. In addition we survey known tools, results and conjectures. Along the way we show profinite rigidity of triangle Coxeter groups - a result which is possibly of independent interest.
Combinatorics of hyperbolic Coxeter groups
Duration: 01.11.2019 bis 31.10.2022
Coxeter groups are abstract reflection groups
which can be classified roughly into three classes: spherical, affine,
and hyperbolic. The hyperbolic case is arguably the most flavorful and
many properties are clear in the spherical case, somewhat clear in the
affine case, and mysterious in the hyperbolic case. To tackle this
complexity, algebraic, combinatorial, and geometric methods need to be
combined.
Chimney retractions in affine buildings
Duration: 01.10.2021 bis 30.04.2022
The conjugacy problem is one of Dehn's three classical problems in group theory. It asks to determine whether or not two given elements in a group are conjugate. In this project we solve this problem and characterize the full conjugacy class of elements in split subgroups of the full isometry group of the n-dimensional real affine space.
Geometry of big data clouds
Duration: 01.01.2020 bis 31.12.2021
In this project we use modern methods of geometric group theory to investigate connected components of clouds within in ICON weather model. We are currently developing a prototype to determine connected components in cloud data based on the triangular grid. First publications will be available, soon.This is a joint project with Aiko Voigt from KIT.
Kombinatorik von Schubertvarietäten
Duration: 01.04.2018 bis 31.12.2021
Dieses Projekt untersucht sogenannte Schubertvarietäten und hat zum Ziel ein Kombinatorisches framework zu entwickeln um deren Tangentialräume zu verstehen und klassifizieren zu können.
Schubertvarietäten sind Untervarietäten von Fahnenvarietäten und spielen eine wichtige Rolle in der Darstellungstheorie.
Dimensions and non-emptiness of affine Deligne Lusztig varieties
Duration: 01.04.2016 bis 30.06.2021
In diesem Projekt werden geometrische Methoden entwickelt um Dimensionen affiner Deligne-Lusztig Varietäten zu berechnen. Hierbei handelt es sich um Untervarietäten affiner Fahnenvarietäten.
Die Fragestellung stammt aus der arithmetischen Geometrie und wird hier mit neuen Methoden aus der geometrischen Gruppentheorie untersucht.
Das Projekt wird in Kooperation mit Elizabeth Milicevic (Haverford, USA) und Anne Thomas (Sydney, Australien) durchgeführt und durch ein ARC Discovery project gefördert.
Compactifications and Local-to-Global Structure for Bruhat-Tits Buildings
Duration: 01.10.2017 bis 30.09.2020
The project is concerned with rigidity, compactifications and local-to-global principles in CAT(0) geometry. One aim is to give a uniform construction of compactifications of euclidean buildings, using Gromov's embedding into spaces of continuous functions.
The ultimate goal is to study the dynamics of discrete group actions on the building, using the compactification.
The project also intends to investigate LG-rigidity and non-rigidity for the 1-skeletons and chamber graphs of general Bruhat-Tits buildings.
Bruhat Tits buidlings are simplicial analogs of symmetric spaces and are a fundamental tool to study algebraic groups over non-archimedian local fields. Their combinatorial structure encodes a lot of information about flag varieties and Grassmannians.
The Geometry of Big Data Clouds
Duration: 01.09.2019 bis 31.08.2020
This project establishes a surprising connection between high-resolution climate modeling and geometric group theory.
We aim to address the need for fundamentally new strategies in analyzing the big-data output from next-generation climate models.The new German-community climate model ICON is a next-generation model (Zängl et al.,2015). Thanks to its triangular grid, ICON runs effectively on tens of thousands of CPUs and harvests advances in supercomputing.
In contrast to previous climate models this new model is based on a triangular grid. To provide fast computing algorithms one can thus no longer work with a cube-grid structure.
The main idea of this project is to use a technique from geometric group theory to translate the triangle structure into a parallel grid and back and thus to provide a methods to integrate existing fast algorithms into the new model.
This project won the "Best grant proposal award 2018" by the YIN@KIT
Contracting boundaries of CAT(0) spaces
Duration: 01.10.2016 bis 19.02.2020
Kontraktionsränder sind Ränder metrischer Räume mit nichtpositiver Krümmung, sogenannte CAT(0) Räume, die invariant unter Quasi-Isometrie sind.
Daher eignen sie sich gut um das grobe Verhalten der metrischen Räume zu untersuchen.
Dieses Dissertationsprojekt hat zum Ziel für geeignete Klassen von CAT(0) Räume ebensolche Ränder zu berechnen.